Can SMS-extension increase farmer experimentation? Evidence from Six RCTs in East Africa

Raissa Fabregas (UT Austin), Michael Kremer (PAD & Harvard) Matthew Lowes (OAF), Robert On (CZI), Giulia Zane (IADB)

November 5th, 2018

Use of SMS to affect behavior

- Use of SMS to change behavior:
 - Health (Hall et al., 2015; Head et al., 2013)
 - Education (Ksoll et al, 2014; Aker et al. 2012; Berlinski et al. 2016; Cuhna et al, 2017)
 - Governance (Aker et al., 2017; Dustan et al., 2018)
 - Agriculture (Aker et al., 2016; Hildebrandt et al., 2015; Courtois and Subervie, 2014, Camacho and Conover, 2010; Fafchamps and Minten, 2012)
- Concerns around impact: illiteracy, 'spam', not reading/understanding
- Even if effect small, potentially very cost-effective
 - The cost to carriers to transmit a marginal message is close to zero
 - E.g. Amazon's web services SMS: \$0.002 in India and \$0.006 in US

Role of Meta-analysis

- Failure to reject null hypothesis often interpreted as ineffective program
 - Potentially problematic for low cost interventions
 - Meta-analysis can help
- Heterogeneity of treatment effects?

ICT-based Extension

- Potential to reach farmers at scale at a low-cost, time to the season, personalize, repeat information, etc.
 - Traditional in-person costly and subject to delivery issues (Anderson and Feder, 2007)
- Is information/salience a constraint?
- Agricultural info perhaps too complex to deliver through phone (Aker, 2011)?
- Few evaluations despite wide array of projects (Nakasone et al., 2014) and evidence characterized as 'mixed' (Aker et al., 2016)

This Project

- Can SMS-based agricultural information change farmer behavior?
 - Meta-analytic techniques to combine results from multiple experiments and increase power
- Six RCTs of SMS-based programs implemented in Kenya and Rwanda
 - Differences in implementer, message content, farmer population
 - All programs designed to encourage experimentation with inputs
 - Agricultural lime (N=6) & chemical fertilizers (N=4)
- What lessons can we learn about mechanisms and how to optimize messages?
 - Learning vs. salience?
 - Framing
 - Repetition
 - Complementary add-ons: voice calls, call center access, etc.

Outline of Talk

- 1. Motivation
- 2. Context
- 3. The programs
- 4. Results from six trials
 - Summary of Results
 - Differences by program characteristics
- 5. Cost-effectiveness
- 6. Conclusion

Implementing Agencies

- Kenya Agriculture and Livestock Organization (KALRO)
 - Public agency
 - Broad messages covering various agricultural management topics
 - Worked with general population of farmers
- Innovations for Poverty Action (IPA) & Precision Agriculture for Development (PAD)
 - Non-for profit organizations: research focused and interest in determining impact and test alternatives
 - Use of local soil test to target lime recommendations
 - Worked with general farmer population and clients of agrodealers
- One Acre Fund (OAF)
 - Social enterprise providing inputs on credit and agricultural training to farmers (extensive additional in-person extension services)
 - Use of soil tests to target lime recommendations
 - Worked with existing clients

Recommended Inputs

• Lime

- All programs recommended agricultural lime and input used to reduce soil acidity
- Estimated returns 35-40% (OAF, 2015)
- Low baseline adoption of lime in general farmer population (6-12%)
- · Less well known, only recent push to make available to farmers

Chemical Fertilizers

- Widely known and available for purchase
- High baseline adoption of planting fertilizers 85-95%, but lower experimentation with other types (e.g. top-dressing: less than 20% ever used Urea and 60% ever used CAN)

Overview of the programs

	Populations	Number of SMS	Example message	Additional randomization	Baseline / Control use	Surveys	Administrative data
KALRO Kenya	 N= 800 Randomly selected farmers 	Total: 20Lime: 2Fertilizer 5:	''If soil acidic (pH less than 5.5) apply recommended rate of lime"		Lime: 7%Fertilizer: 84%	In person:BaselineEndline	Paper coupon
IPA/PAD1 Kenya	 N= 1,900 Existing IPA database 	 Total: 24-28 Lime: 8 Fertilizer 9 	"Based on soil test around [landmark] we recommend you buy [kg] lime"	General or specific Information	Lime: 12%Fertilizer: 84%	 Phone: Baseline Endline	SMS coupon
IPA/PAD2 Kenya	 N= 5,900 Agrodealer clients 	Total: 13Lime: 6Fertilizer 4	"The soil in your area is [level] acidic. Apply [quantity] bottle top per plant"	Offer/Follow up to additional phone call	Lime: 9%Fertilizer: 84%	Phone:BaselineEndline	SMS coupon
OAF1 - Kenya	N= 4,900OAF clients	• Lime: 6	"Your soil is [level] acidic. We recommend [quantity] kg lime per acre"	Broad or Detailed Information	• Lime: 12%	 Phone (1/3 sample) Baseline Endline 	OAF sales
OAF2 - Kenya	N= 32,500OAF clients	 Total: 1-10 Lime: 1-5 Fertilizer 1-5 	<i>"[Name] OAF recommends you to buy [Q] lime. Farmers all over Kenya are getting bigger yields. Keep up with them"</i>	Behavioral framing repetition, frequency, adding fertilizer information	Lime: 32%Fertilizer: 93%		OAF sales
OAF3 - Rwanda	 N= 110,500 OAF clients (randomized at group level) 	• Lime: 1-4	"Do you have fields with poor harvest even when you use fertilizer? You probably have acidity and need lime"	Behavioral framing repetition, frequency	• Lime: 4%		OAF sales

Data

- Administrative:
 - Discount coupon redemption:
 - Paper coupon: 50% discount lime (KALRO)
 - SMS coupon: 10 kg lime or equivalent gift (IPA/PAD1), 15% discount (IPA/PAD2)
 - Direct purchases from OAF
- Survey data:
 - Phone-based survey and home visits (KALRO only)
- Do not have same outcomes across all projects

Estimation

- Logistic regressions ran for each program and results reported as odds ratios
 - Intention to Treat estimates
 - Show effects pool all treatment arms for given study
 - We control for all stratification variables, location fixed effects, demographic characteristics, and previous input use
- All program results synthesized in a meta-analysis:
 - We estimate random effects model that assumes that there is a distribution of true effects across settings (e.g. obtain the mean of a distribution of true effects)
 - Study weights are given by the inverse of variance (within and between-study variance)
- Tests of Heterogeneity:
 - P-value for Q test for homogeneity (null of homogenous treatment effects)
 - I^2 index (% of variance that is attributable to study heterogeneity)

Knowledge gain effect (self-reported): 1.57 (95% CI: 1.40 , 1.75)

- Ex: "Do you know strategies to deal with soil acidity? (lime=1)"
- N=4

Followed Lime Recommendation (administrative): 1.19 (95% CI 1.12,1.26)

- Effects measured for concurrent agricultural season
- N=5

Followed Lime Recommendation (self-reported): 1.58 (95% CI 1.35, 1.83)

- Effects measured for concurrent agricultural season
- N=4

Persistence follow Lime (administrative): 1.07 (95% CI 0.98, 1.17)

- Effects measured for subsequent agricultural season
- N=4

Followed Fert Recommendation (administrative): 1.31 (95% CI: 1.19, 1.45)

- Effects measured for concurrent agricultural season
- N=3 (no admin data for KARLO in concurrent season)

Followed Fert Recommendation (self-reported): 1.02 (95% CI: 0.86, 1.22)

- Effects measured for concurrent agricultural season
- N=3 (no survey data for OAF2-Kenya)

Summary

	Studies (N)	Effect	95% Confidence Interval	
Odds Ratios				
Heard Lime	4	1.21	0.93	1.57
Knowledge Acidity	4	1.57	1.4	1.75
Lime recommendation (survey, first season)	4	1.58	1.35	1.83
Lime recommendation (admin, first season)	5	1.19	1.12	1.26
Lime recommendation (admin, second season)	4	1.07	0.98	1.17
Fertilizer Recommendation (survey)	3	1.02	0.86	1.22
Fertilizer Recommendation (admin)	3	1.31	1.19	1.45
Index (s.d.)				
Adoption of other inputs	6	0.01	0.00	0.01

- Positive effects on knowledge and experimentation with lime
 - Cannot reject all programs have the same common effects using odds ratio model
 - Can reject for lime using LPM, once OAF3-R is included
- Fertilizer results less clear
 - Only one program had statistically significant results: OAF2-K
 - Lower baseline adoption (the program promoted second top-dressing, a less common practice)

Message Repetition

• OAF2-K and OAF3-R randomized number of repetitions

	Followed lime rec					
	OAF	2-K	OAF3-R			
	(1)	(2)	(3)	(4)		
N Lime SMS	1.035*** (0.008)		1.057*** (0.011)			
N Lime SMS ≥ 1		0.983		1.043		
N Lime SMS \geq 2		1.159**		1.131**		
N Lime SMS \geq 3		1.023		1.015		
N Lime SMS \geq 4		1.023		1.022		
N Lime SMS \geq 5		0.973 (0.044)		(0.030)		
Mean Control Observations	0.32 32572	0.32 32572	0.05 87928	0.05 87928		

Notes: All regressions include controls. Robust standard errors in parenthesis. For OAF3-R sample standard errors are clustered at the farmer group level * p < .10, ** p < .05, *** p < .01.

Lower Bound on Cost-effectiveness

- Back of the envelope calculation considering only lime adoption as outcome and effects for one season
- Benefits:
 - On average programs increase quantity of lime used by 1.2 kg
 - On farm trials found 2.47 kg of maize increase per kg of lime applied (OAF, 2015)
 - Revenue from one additional kg of maize \$0.35 from local market prices minus estimated additional labor and transport cost
 - Cost of lime application \$0.15 per kg from local market prices plus estimated additional labor and transport costs
- Costs:
 - Assume marginal cost of 6-message SMS program \$0.04
 - Social cost would be even lower
- Estimated cost-benefit ratio: 13.2

Conclusions

- SMS-based programs can change farmer behavior
 - At scale per farmer cost less than \$0.01 US
 - Consistent impacts for new input, less clear for well-known ones
 - Repetition important, framing of messages less so
- Future Work:
 - Measure spillovers
 - Predictors of heterogeneity?

Appendix

Estimation: Individual Program Effects

- Intention to Treat Effects
- Logistic regression estimated for each project & pooling results from all treatment arms:
 - Main results reported in terms of odds ratios (OR)
- X vector of demographic characteristics for individual i, randomization strata, baseline practices and are area (γ_A) fixed effects
- Clustering of errors at group level if for OAF3-Rwanda

Estimation: Random Effects Meta-analysis

 Weighted average of study estimates using a random effects (RE) model that allows for the true effect to vary across studies:

$$\widehat{\theta_k^{RE}} = \sum_{j=1}^{s} \frac{w_{j,k}}{\sum_{j=1}^{s} w_{j,k}} \widehat{\theta_{j,k}}$$

Where
$$\widehat{\theta_{j,k}} \sim N(\theta_{j,k}, \widehat{\sigma_{j,k}}^2)$$
 and $\theta_{j,k} \sim N(\mu_k, \tau_k^2)$

j indexes study, k indexes outcome, θ is the true effect and the weights (w) are given by

$$w_{j,k} = 1/(\hat{\tau}_k^2 + \hat{\sigma}_{j,k}^2)$$

- Tests of Heterogeneity:
 - P-value for Q test for homogeneity:
 - Under null of homogeneity, the Q-statistic follows a chi-distribution with s-1 degrees of freedom
 - *I*² index:
 - indicates the percentage of variance in a meta-analysis that is attributable to study heterogeneity