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* The factors producing stable individual differences
in children’s academic achievement are
unmodifiable, in principle.

* All early childhood education programs have no
long-term benetits.



Things | believe

* The causal effects of one-time boosts to children’s
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Things | believe

* The causal effects of one-time boosts to children’s
early academic skills on their much later academic
skills are likely to be small.

 |f skill building is the mechanism we're/you’re
interested in, it might help to change some of our
research practices and priorities.
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 Theoretical distinction between achievement and
aptitude

* Clear vertical transfer in math learning
(e.g., counting, addition, multiplication)

e Supportive correlational research
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Statistically Controlling for Confounding
Constructs Is Harder than You Think
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Boring, plausible alternative theory
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Average 1-year MS estimate from 3 datasets: .35

For meta-analytic AR estimates for personality, see Anusic & Schimmack (2016, JPSP)

From Bailey, Watts, Littlefield, & Geary (2014; Psych Science);
Bailey et al., (2018, American Psychologist)



Figure 5: Correlations inferred from MS path estimates
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Figure 2: Cognitive impacts in 67 ECE studies
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(2016, Developmental Psychology)
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The “right” kinds of skills”

e Can we identity skills that are:
* Malleable through intervention,
 Fundamental for success,

* And would not develop quickly in most
counterfactual conditions?

From Bailey, Duncan, Odgers, & Yu
(2017, Journal of Research on Educational Effectiveness)
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From Hill, Bloom, Black, & Lipsey (2008, Child Development Perspectives)
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e Can we identity skills that are:
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* And would not develop quickly in most
counterfactual conditions?

From Bailey, Duncan, Odgers, & Yu
(2017, Journal of Research on Educational Effectiveness)
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* [radeoffs between frifecta criteria:

 Fundamental AND malleable (e.g., basic
language and literacy) are already
aggressively targeted, and therefore likely to
develop under counterfactual conditions.
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e Clearly fundamental skills that do not develop
under most counterfactual conditions are not
likely to be malleable by scalable interventions
(perhaps too pessimistic).
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But why the classic ECE
findings”?

* Possible explanations
* The “right” kinds of skills

 "Foot-in-the-Door” pathways: The right
affordances at the right times get children through
a period of risk

From Bailey, Duncan, Odgers, & Yu
(2017, Journal of Research on Educational Effectiveness)
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Possible foot in the door
pathways

* Non-trifecta skills that keep children from being
retained in school, kicked out of school, choosing
a bad peer group

* Suggestive evidence from Chicago Double Dose
Algebra evaluation
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Can we avoid negative and promote positive
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Problematic if these probabilities multiply.



Can we avoid negative and promote positive

developmental cascades?

A cascade model of Dodge et al (2008):

Adverse | Adolescent
violence

early |
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\
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readiness |
A\ | Jow ‘rt:ar_(ant
Conduct \ v~ moriitoring
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But, if temporary boosts increase the likelihood of
thousands of foot in the door pathways, ...
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e Clarity of theory and methods

 More causally informative analysis (but maybe | am
“preaching to the choir”)
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Clarity of theory and methods

 More causally informative analysis by skill building
researchers + Introduction to modern
measurement theory for policy researchers
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e Clarity of theory and methods

 More causally informative analysis in personality
research + Introduction to modern measurement
theory for policy researchers

* Policy relevant field experimentation

* Follow-up data

* Follow-up interventions
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