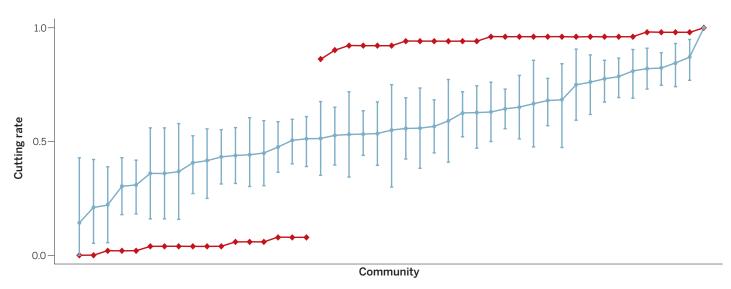
The Seduction of Applied Conformity

Charles Efferson, Sonja Vogt, Ernst Fehr

Department of Economics
University of Zurich

Study 1

The Distribution of Attitudes and Practice


(Efferson et al., 2015, Science)

BEHAVIOR

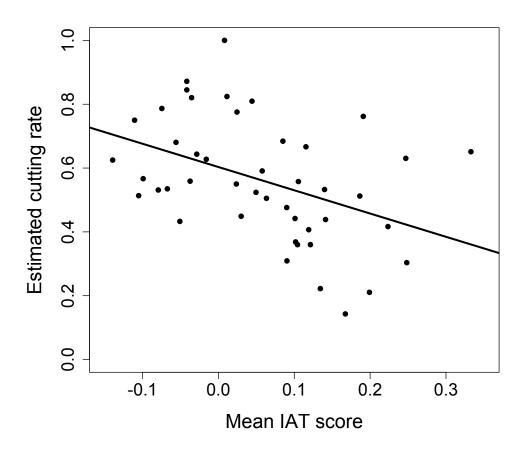
Female genital cutting is not a social coordination norm

New data from Sudan question an influential approach to reducing female genital cutting

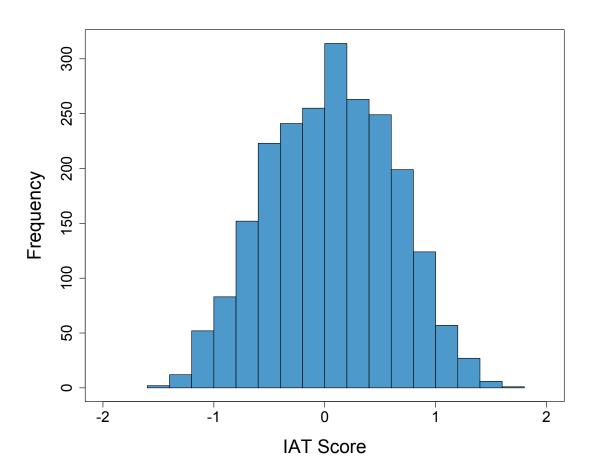
By Charles Efferson, 1⁺⁺ Sonja Vogt, 1⁺⁺ Amy Elhadi, ² Hilal El Fadil Ahmed, ² Ernst Fehr¹⁺

Cutting rates in Gezira communities. Red diamonds show ordered cutting rates as predicted by the coordination game model (12). Blue dots show actual cutting rates across the 45 communities with 95% boot-strapped confidence intervals.

Discontinuities in implicit attitudes?


- We developed an implicit association test for cut versus uncut girls.
- Given neutrality (D=0), disparate cutting norms imply a bimodal distribution for D.
- Measured implicit attitudes with 2260 adults in the same 45 communities.
- Example stimuli:

Anonymous Laboratory Conditions (Chauchard, 2013)



Cutting Rates and Attitudes by Community

Pearson's correlation, $\rho = -0.423$, with two-dimensional weighted bootstrapping, p < 0.0008.

$D > 0 \Rightarrow$ an Uncut/Good Association

Hartigans' dip test of unimodality, p = 1. Tests of unimodality by community are also not significant.

Study 2

Dramatising the Tension Within

(Vogt et al., 2016, Nature)

Colonial Intrusion and Local Backlash

- If one views cutting as locally pervasive and entrenched (Shell-Duncan and Hernlund, 2000), abandonment implies the need for foreign values and ideals.
- This can accentuate inter-cultural divisions and lead to backlash (Thomas, 2000; Shell-Duncan, 2008; Camilotti, 2015) or misrepresentation (Cloward, 2014).
- Cutting is not necessarily locally pervasive (Efferson et al., 2015; Bellemare et al., 2015).
- Produced four movies (90 mins each) that dramatise members of an extended family as they confront each other with divergent views about whether to continue cutting.
 - \Rightarrow Tension between cutting and abandonment is **as local as possible**.

The Power of a Good Story

- Entertainment can change attitudes and behaviours (Jensen and Oster, 2009; La Ferrara et al., 2012; Kearney and Levine, 2015; La Ferrara, 2015).
- Entertainment to promote socially beneficial change is often based on social learning theory (Bandura, 1977; Sabido, 1981; La Ferrara, 2015).
- The demand for entertainment is ubiquitous (DellaVigna and La Ferrara, 2015; La Ferrara, 2015), which means ventures can be sustainable and biased participation minimised.

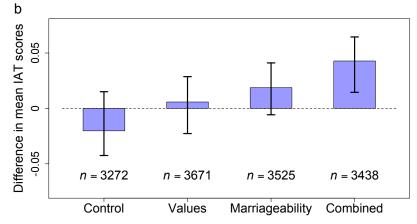
Private Values versus Marriage Prospects

Four movies of 90 minutes about an extended family in contemporary Sudan.

- Control: main plot (100%) with heady mix of love, intrigue, deception, and forgiveness.
- Values: main plot (70%) plus sub-plot (30%) dramatising discordant views on health, Islam, and femininity.
- Marriageability: main plot (70%) plus sub-plot (30%) dramatising discordant views on how cutting affects marriage prospects.
- Combined: main plot (70%) plus sub-plot (30%) dramatising discordant views in terms of values and marriageability.

The Yard: Dramatising the Tension Within

Experimental Procedures


- Experiment 1: Movies randomly assigned to groups of people within a *community*, and we immediately elicited implicit attitudes after the movies (189 participants, 5 communities).
- Experiment 2: Movies randomly assigned to groups of communities within a *region*, and we elicited implicit attitudes one week later (7729 participants, 122 communities).

Changing cultural attitudes towards female genital cutting

 $Sonja\ Vogt^{1}*,\ Nadia\ Ahmed\ Mohmmed\ Zaid^{2},\ Hilal\ El\ Fadil\ Ahmed^{3},\ Ernst\ Fehr^{1}\S\ \&\ Charles\ Efferson^{1}*\S$

Intention to Treat, Difference-in-Difference

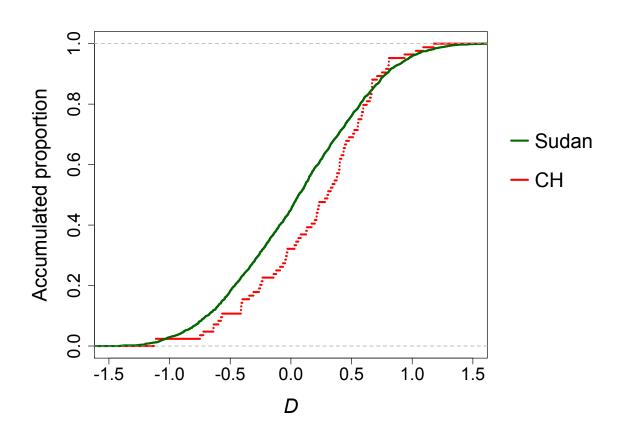
	Complete cases		Inverse Prob. Weighting		Multiple Imputation	
Parameter	Estimate (Std. error)	Estimate (Std. error)	Estimate (Std. error)	Estimate (Std. error)	Estimate (Std. error)	Estimate (Std. error)
Intercept	-0.0544	-0.101	-0.0536	-0.0984	-0.0556	-0.0993
r	(0.0492)	(0.0703)	(0.0491)	(0.0696)	(0.0517)	(0.0700)
Follow-up	-0.0348	-0.0463	-0.0341	-0.0464	-0.0377	-0.0495
-	(0.0265)	(0.0268)	(0.0265)	(0.0267)	(0.0281)	(0.0278)
Values	-0.0905	-0.0610	-0.0899	-0.0628	-0.0890	-0.0611
	(0.0623)	(0.0542)	(0.0622)	(0.0540)	(0.0636)	(0.0556)
Marriageability	-0.0550	-0.0500	-0.0550	-0.0508	-0.0526	-0.0486
	(0.0477)	(0.0413)	(0.0477)	(0.0412)	(0.0498)	(0.0433)
Combined	-0.0201	-0.00951	-0.0202	-0.00923	-0.0160	-0.00796
	(0.0532)	(0.0465)	(0.0533)	(0.0464)	(0.0545)	(0.0478)
Follow-up ×	0.0450	0.0406	0.0447	0.0423	0.0445	0.0411
Values	(0.0369)	(0.0371)	(0.0370)	(0.0370)	(0.0389)	(0.0388)
Follow-up \times	0.0675*	0.0611	0.0667	0.0610	0.0667	0.0607
Marriageability	(0.0338)	(0.0339)	(0.0340)	(0.0339)	(0.0366)	(0.0361)
Follow-up \times	0.111**	0.113**	0.111**	0.111**	0.106**	0.110**
Combined	(0.0345)	(0.0352)	(0.0346)	(0.0350)	(0.0382)	(0.0376)
Community controls	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
Individual controls		\checkmark		\checkmark		\checkmark
Num. subjects	7729	7729	7729	7729	7729	7729
Num. observations	13,906	13,906	13,906	13,906	13,906	13,906
Num. imputed	0	0	0	0	1552	1552
Robust standard errors clustered on 88 blocks of communities.				*** $p \le 0.001$	** $p \in (0.001, 0.01]$	* $p \in (0.1, 0.05]$

Intention to Treat, Difference-in-Difference (Controls)

	Complete cases		Inverse Pro	b. Weighting	Multiple Imputation	
	Estimate	Estimate	Estimate	Estimate	Estimate	Estimate
Parameter	(Std. error)	(Std. error)	(Std. error)	(Std. error)	(Std. error)	(Std. error)
Testamanest	0.0544	0.101	0.0526	0.0004	0.0556	0.0002
Intercept	-0.0544	-0.101	-0.0536	-0.0984	-0.0556 (0.0517)	-0.0993
	(0.0492)	(0.0703)	(0.0491)	(0.0696)	(0.0517)	(0.0700)
Woman		0.0938***		0.0933***		0.0936***
		(0.0253)		(0.0253)		(0.0241)
Age		0.00219**		0.00218**		0.00215**
		(0.000818)		(0.000816)		(0.000790)
Spouse born same		-0.0323		-0.0340		-0.0319
community		(0.0218)		(0.0217)		(0.0217)
Nomad		-0.213***		-0.211***		-0.212***
		(0.0231)		(0.0231)		(0.0229)
Ancestors nomads		-0.150***		-0.147***		-0.149***
		(0.0235)		(0.0233)		(0.0229)
Daughters		0.0521*		0.0516*		0.0528*
		(0.0238)		(0.0239)		(0.0241)
Sons		0.0515		0.0526		0.0505
		(0.0277)		(0.0273)		(0.0271)
East Gezira	0.0550	0.0212	0.0548	0.0205	0.0538	0.0196
	(0.0367)	(0.0318)	(0.0367)	(0.0316)	(0.0381)	(0.0335)
High cutting	0.0164	0.0144	0.0159	0.0126	0.0192	0.0172
	(0.0396)	(0.0340)	(0.0394)	(0.0335)	(0.0405)	(0.0353)
High population	0.0604	0.0407	0.0596	0.0402	0.0592	0.0395
J 1 1	(0.0407)	(0.0342)	(0.0405)	(0.0338)	(0.0415)	(0.0353)
Robust standard errors clustered on 88 blocks of communities.				*** $p \le 0.001$	** $p \in (0.001, 0.01]$	* $p \in (0.1, 0.05]$

Study 3

Immigrants vs. Countries of Origin


(Vogt et al., 2017, SSM - Population Health)

Article

The risk of female genital cutting in Europe: Comparing immigrant attitudes toward uncut girls with attitudes in a practicing country

Sonja Vogt*, Charles Efferson, Ernst Fehr

Department of Economics, University of Zurich, Blumlisalpstrasse 10, 8006 Zurich Switzerland

Conclusions

- Local heterogeneity in attitudes and practices exists.
- Emphatically, local heterogeneity does **NOT** imply that positive social influence is absent (Hayford, 2005; Howard and Gibson, 2017).
- Local heterogeneity does imply that positive social influence is probably not creating the kind of path-dependent cultural evolutionary dynamics that a policy maker might want to exploit to accelerate behaviour change.
- Local heterogeneity can be used to design effective (entertainment-based) interventions that avoid emphasising inter-cultural conflict.

Acknowledgements

- Swiss National Science Foundation and the European Research Council
- The Swiss National Committee of UNICEF
- UNICEF, Sudan
- National and Gezira State Councils for Child Welfare, Sudan
- Sudanese Association of Switzerland
- Waleed Omer Babikir Alalfi, Omer Abdazeez Abdarazig Abdalla, Mahzarin Banaji, Abigail Barr, Nada Sayed

References

- Asch, S. E. (1955). Opinions and social pressure. Scientific American, 193(5), 1–7.
- Bandura, A. (1977). Social Learning Theory. Englewood Cliffs, NJ: Prentice Hall.
- Bellemare, M. F., Novak, L., and Steinmetz, T. L. (2015). All in the family: Explaining the persistence of female genital cutting in West Africa. *Journal of Development Economics*, **116**, 252 265.
- Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago: University of Chicago Press.
- Camilotti, G. (2015). Interventions to stop female genital cutting and the evolution of the custom: Evidence on age at cutting in senegal. *Journal of African Economies*.
- Chauchard, S. (2013). Using mp3 players in surveys: The impact of a low-tech self-administration mode on reporting of sensitive attitudes. *Public Opinion Quarterly*, **77**(S1), 220–231.
- Cloward, K. (2014). False commitments: local misrepresentation and the international norms against female genital mutilation and early marriage. *International Organization*, **68**(03), 495–526.
- DellaVigna, S. and La Ferrara, E. (2015). Economic and social impacts of the media. In S. Anderson, J. Waldfogel, and D. Stromberg, editors, *Handbook of Media Economics*. Amsterdam: Elsevier.
- Dolan, P., Hallsworth, M., Halpern, D., King, D., Metcalfe, R., and Vlaev, I. (2012). Influencing behaviour: The mindspace way. *Journal of Economic Psychology*, **33**(1), 264–277.
- Efferson, C., Vogt, S., Elhadi, A., Ahmed, H. E. F., and Fehr, E. (2015). Female genital cutting is not a social coordination norm. *Science*, **349**(6255), 1446–1447.

- Efferson, C., Lalive, R., Cacault, M. P., and Kistler, D. (2016). The evolution of facultative conformity based on similarity. *PLoS One*, **11**(12), e0168551.
- Hayford, S. R. (2005). Conformity and change: Community effects on female genital cutting in kenya. *Journal of Health and Social Behavior*, **46**(2), 121–140.
- Howard, J. A. and Gibson, M. A. (2017). Frequency-dependent female genital cutting behaviour confers evolutionary fitness benefits. *Nature Ecology & Evolution*, 1, 0049.
- Jensen, R. and Oster, E. (2009). The power of tv: Cable television and women's status in India. *The Quarterly Journal of Economics*, **124**(3), 1057–1094.
- Kearney, M. S. and Levine, P. B. (2015). Media influences on social outcomes: The impact of MTV's 16 and pregnant on teen childbearing. *American Economic Review*, **105**(12), 3597–3632.
- La Ferrara, E. (2015). Mass media and social change: Can we use television to fight poverty?
- La Ferrara, E., Chong, A., and Duryea, S. (2012). Soap operas and fertility: Evidence from Brazil. *American Economic Journal:*Applied Economics, 4(4), 1–31.
- Nyborg, K., Anderies, J. M., Dannenberg, A., Lindahl, T., Schill, C., Schlüter, M., Adger, W. N., Arrow, K. J., Barrett, S., Carpenter, S., et al. (2016). Social norms as solutions. Science, 354(6308), 42–43.
- Sabido, M. (1981). Towards the social use of soap operas. Mexico City, Mexico: Institute for Communication Research.
- Shell-Duncan, B. (2008). From health to human rights: Female genital cutting and the politics of intervention. *American Anthropologist*, **110**(2), 225–236.

- Shell-Duncan, B. and Hernlund, Y. (2000). Female "Circumcision" in Africa: Dimensions of the Practice and Debates. In B. Shell-Duncan and Y. Hernlund, editors, Female "Circumcision" in Africa: Culture, Controversy, and Change, pages 1–40. Boulder, CO: Lynne Rienner.
- Thomas, L. (2000). "Ngaitana (I Will Circumcise Myself)": Lessons from Colonial Campaigns to Ban Excision in Meru, Kenya. In B. Shell-Duncan and Y. Hernlund, editors, Female "Circumcision" in Africa: Culture, Controversy, and Change, pages 129–150. Boulder, CO: Lynne Rienner.
- UNFPA-UNICEF (2013). Joint programme on female genital mutilation/cutting: Accelerating change (annual report 2012). http://www.unfpa.org/publications/unfpa-unicef-joint-programme-female-genital-mutilationcutting-annual-report-2012. Accessed 6 December 2016.
- Vogt, S., Zaid, N. A. M., Ahmed, H. E. F., Fehr, E., and Efferson, C. (2016). Changing cultural attitudes towards female genital cutting. *Nature*, **538**, 506–509.
- Vogt, S., Efferson, C., and Fehr, E. (2017). The risk of female genital cutting in europe: Comparing immigrant attitudes toward uncut girls with attitudes in a practicing country. SSM Population Health, Forthcoming.
- World Bank Group (2015). Mind, society, and behavior: World development report 2015. http://www.worldbank.org/content/dam/Worldbank/Publications/WDR/WDR%202015/WDR-2015-Full-Report.pdf. Accessed 6 December 2016.